姚国珍 1,2,3尹伊萌 1,*李永倩 1,2,3范寒柏 1,2,3
作者单位
摘要
1 华北电力大学 a.电子与通信工程系
2 b.河北省电力物联网技术重点实验室
3 c.保定市光纤传感与光通信技术重点实验室,河北 保定 071003
光纤布拉格光栅传感器采用波长变化反映被测量大小,因此提高光纤光栅的波长解调精度具有重要意义。传统解调方法大多结构单一导致性能受限且对于重叠谱和畸变谱的测量精度欠佳,限制了解调精度的提升。高精度波长解调方法主要解决系统温度稳定性差和寻峰精度低等问题。文章介绍了光通信中光纤光栅波长解调技术的应用,综述了近几年高精度光纤光栅波长解调方法,包括参考光纤光栅、迈克尔逊干涉仪和气室的硬件方法,以及基于神经网络和基于粒子群的软件方法;阐述了每种解调方法的原理以及在光纤光栅传感领域应用时的优缺点,分析了光纤光栅解调方法存在的问题及发展趋势。
光纤布拉格光栅 解调精度 硬软件方法 fiber Bragg grating demodulation accuracy hardware and software method 
光通信研究
2021, 47(4): 41
Author Affiliations
Abstract
1 Institute of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, China
2 Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
The self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using broad-band laser is proposed to reduce coherent Rayleigh noise and improve the system performance. Compared with the system with narrow-band laser, the stimulated Brillouin scattering (SBS) threshold can be improved by about 3 dB. The experi-mental results of the narrow-band laser measurements for three times independently and the broad-band laser meas-urement for one time are compared. The root-mean-square (RMS) errors of Brillouin linewidth for two systems with narrow-band laser and broad-band laser are 6.9 MHz and 2.7 MHz, respectively, and the RMS errors of temperature for the heated fiber are about 1.3 °C and 0.7 °C. With the broad-band laser, signal-to-noise ratio (SNR) of the un-heated fiber is approximately equivalent to that of the integrated three independent Brillouin signals for the narrow-band laser, and the results are believed to be beneficial for performance improvement and measurement time reduc-tion.
光电子快报(英文版)
2018, 14(5): 325
Author Affiliations
Abstract
Department of Electronics and Communication Engineering, North China Electric Power University, Baoding 071003, China
Aiming at the problem of large fading noise in Rayleigh Brillouin optical time domain analysis system, a wavelength scanning technique is proposed to enhance the performance of the temperature sensing system. The principle of the proposed technique to reduce the fading noise is introduced based on the analysis of Rayleigh Brillouin optical time domain analysis system. The experimental results show that the signal-to-noise ratio (SNR) at the end of optical fiber with length of 50 m after 17 times wavelength scanning is 5.21 dB higher than that with single wavelength, the Brillouin frequency shift (BFS) on the heated fiber with length of 70 m inserted at the center of sensing fiber can be accurately measured as 0.19 MHz, which is equivalent to a measurement accuracy of 0.19 °C. It indicates that the proposed tech-nique can realize high-accuracy temperature measurement and has huge potential in the field of long-distance and high-accuracy sensing.
光电子快报(英文版)
2018, 14(2): 84
Author Affiliations
Abstract
Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio (SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 dB, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.
光电子快报(英文版)
2017, 13(6): 414

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!